29 research outputs found

    Hybrid Device-to-Device and Device-to-Vehicle Networks for Energy-Efficient Emergency Communications

    Full text link
    Recovering postdisaster communications has become a major challenge for search and rescue. Device-to-device (D2D) and device-to-vehicle (D2V) networks have drawn attention. However, due to the limited D2D coverage and onboard energy, establishing a hybrid D2D and D2V network is promising. In this article, we jointly establish, optimize, and fuse D2D and D2V networks to support energy-efficient emergency communications. First, we establish a D2D network by optimally dividing ground devices (GDs) into multiple clusters and identifying temporary data caching centers (TDCCs) from GDs in clusters. Accordingly, emergency data returned from GDs is cached in TDCCs. Second, given the distribution of TDCCs, unmanned aerial vehicles (UAVs) are dispatched to fetch data from TDCCs. Therefore, we establish a UAV-assisted D2V network through path planning and network configuration optimization. Specifically, optimal path planning is implemented using cascaded waypoint and motion planning and optimal network configurations are determined by multiobjective optimization. Consequently, the best tradeoff between emergency response time and energy consumption is achieved, subject to a given set of constraints on signal-to-interference-plus-noise ratios, the number of UAVs, transmit power, and energy. Simulation results show that our proposed approach outperforms benchmark schemes in terms of energy efficiency, contributing to large-scale postdisaster emergency response.Comment: 12 page

    Multilink and AUV-Assisted Energy-Efficient Underwater Emergency Communications

    Full text link
    Recent development in wireless communications has provided many reliable solutions to emergency response issues, especially in scenarios with dysfunctional or congested base stations. Prior studies on underwater emergency communications, however, remain under-studied, which poses a need for combining the merits of different underwater communication links (UCLs) and the manipulability of unmanned vehicles. To realize energy-efficient underwater emergency communications, we develop a novel underwater emergency communication network (UECN) assisted by multiple links, including underwater light, acoustic, and radio frequency links, and autonomous underwater vehicles (AUVs) for collecting and transmitting underwater emergency data. First, we determine the optimal emergency response mode for an underwater sensor node (USN) using greedy search and reinforcement learning (RL), so that isolated USNs (I-USNs) can be identified. Second, according to the distribution of I-USNs, we dispatch AUVs to assist I-USNs in data transmission, i.e., jointly optimizing the locations and controls of AUVs to minimize the time for data collection and underwater movement. Finally, an adaptive clustering-based multi-objective evolutionary algorithm is proposed to jointly optimize the number of AUVs and the transmit power of I-USNs, subject to a given set of constraints on transmit power, signal-to-interference-plus-noise ratios (SINRs), outage probabilities, and energy, which achieves the best tradeoff between the maximum emergency response time (ERT) and the total energy consumption (EC). Simulation results indicate that our proposed approach outperforms benchmark schemes in terms of energy efficiency (EE), contributing to underwater emergency communications.Comment: 15 page

    NCAPG2 could be an immunological and prognostic biomarker: From pan-cancer analysis to pancreatic cancer validation

    Get PDF
    More recently, NCAPG2 has emerged as an intrinsically essential participant of the condensin II complex involved in the process of chromosome cohesion and stabilization in mitosis, and its position in particular tumours is now being highlighted. Simultaneously, the genetic properties of NCAPG2 hint that it might have enormous potential to interpret the malignant progression of tumors in a broader perspective, that is, in pan-cancer. Yet, at present, this recognition remains merely superficial and there is a lack of more detailed studies to explore the underlying pathogenesis. To meet this need, the current study was undertaken to comprehensively elucidate the potential functions of NCAPG2 in pan-cancer, based on a combination of existing databases like TCGA and GTEx. NCAPG2 was identified to be overexpressed in almost every tumor and to exhibit significant prognostic and diagnostic efficacy. Furthermore, the correlation between NCAPG2 and selected immune features, namely immune cell infiltration, immune checkpoint genes, TMB, MSI, etc. also indicates that NCAPG2 could potentially be applied in guidance of immunotherapy. Subsequently, in pancreatic cancer, this study further clarified the utility of NCAPG2 that downregulation of its expression could result in reduced proliferation, invasion and metastasis of pancreatic cancer cells, among such phenotypical changes, the epithelial-mesenchymal transition disruption could be at least one of the possible mechanisms raising or enhancing tumorigenesis. Taken above, NCAPG2, as a member of pan-oncogenes, would serve as a biomarker and potential therapeutic target for a range of malignancies, sharing new insights into precision medicine

    Impact of Ocean Acidification on the Energy Metabolism and Antioxidant Responses of the Yesso Scallop (Patinopecten yessoensis)

    Get PDF
    Ocean acidification (OA), which is caused by increasing levels of dissolved CO2 in the ocean, is a major threat to marine ecosystems. Multiple lines of scientific evidence show that marine bivalves, including scallops, are vulnerable to OA due to their poor capacities to regulate extracellular ions and acid-based status. However, the physiological mechanisms of scallops responding to OA are not well understood. In this study, we evaluated the effects of 45 days of exposure to OA (pH 7.5) on the energy metabolism and antioxidant capability of Yesso scallops. Some biochemical markers related to energy metabolism (e.g., content of glycogen and ATP, activity of ATPase, lactate dehydrogenase, glutamate oxaloacetate transaminase, and glutamate-pyruvate transaminase), antioxidant capacity (e.g., reactive oxygen species level, activity of superoxide dismutase, and catalase) and cellular damage (e.g., lipid peroxidation level) were measured. Our results demonstrate that the effects of the reduced pH (7.5) on scallops are varied in different tissues. The energy reserves are mainly accumulated in the adductor muscle and hepatopancreas. Yesso scallops exhibit energy modulation by increasing lactate dehydrogenase activities to stimulate anaerobic metabolism. The highly active Na+/K+-ATPase and massive ATP consumption in the mantle and gill indicate that a large amount of energy was allocated for the ion regulation process to maintain the acid-base balance in the reduced-pH environment. Moreover, the increase in the reactive oxygen species level and the superoxide dismutase and catalase activities in the gill and adductor muscle, indicate that oxidative stress was induced after long-term exposure to the reduced-pH environment. Our findings indicate that the effects of OA are tissue-specific, and physiological homeostasis could be modulated through different mechanisms for Yesso scallops

    GLS as a diagnostic biomarker in breast cancer: in-silico, in-situ, and in-vitro insights

    Get PDF
    BackgroundRecently, a novel programmed cell death mechanism, Cuproptosis, has been discovered and found to play an important role in the development and progression of diverse tumors. In the present study, we comprehensively investigated the core gene of this mechanism, GLS, in breast cancer.Materials and methodsBulk RNA sequencing data were curated from the TCGA repository to investigate the aberrant expression of GLS over diverse cancer types. Then, we examined its efficacy as a diagnostic biomarker in breast cancer by Area Under Curve (AUC) of the Receiver Operative Characteristic (ROC) curve. Furthermore, by applying siRNA technique, we knocked down the GLS expression level in cancerous cell lines, measuring the corresponding effects on cell proliferation and metastasis. Afterward, we explored the potential implications of GLS expression in the tumor immune microenvironment quantitatively by using several R packages and algorithms, including ESTIMATE, CIBERSORT, etc.ResultsPan-cancer analysis suggested that GLS was aberrantly over-expressed in many cancer types, with breast cancer being typical. More in-depth analyses revealed the expression of GLS exerted a high ROC-AUC value in breast cancer diagnosis. Through the knock-down of GLS expression, it was found that GLS expression was strongly relevant to the growth and metastasis of tumor. Furthermore, it was also found to be correlated with the immune tumor microenvironment.ConclusionWe highlighted that GLS expression might be applicable as a diagnostic biomarker in breast cancer and possess significant implications in the growth and metastasis of tumor and the immune tumor microenvironment, sharing new insights into ontological and personalized medicine

    Chromosomal mapping of tandem repeats in the Yesso Scallop, Patinopecten yessoensis (Jay, 1857), utilizing fluorescence in situ hybridization

    No full text
    Construction of cytogenetic maps can provide important information for chromosome identification, chromosome evolution and genomic research. However, it hasn’t been conducted in many scallop species yet. In the present study, we attempted to map 12 fosmid clones containing tandem repeats by fluorescence in situ hybridization (FISH) in the Yesso scallop Patinopecten yessoensis (Jay, 1857). The results showed 6 fosmid clones were successfully mapped and distributed in 6 different pairs of chromosomes. Three clones were respectively assigned to a pair of metacentric chromosomes, a pair of submetacentric chromosomes and a pair of telocentric chromosomes and the remaining 3 clones showed their loci on three different pairs of subtelocentric chromosomes by co-hybridization. In summary, totally 8 pairs of chromosomes of the Yesso scallop were identified by 6 fosmid clones and two rDNA probes. Furthermore, 6 tandem repeats of 5 clones were sequenced and could be developed as chromosome specific markers for the Yesso scallop. The successful localization of fosmid clones will undoubtedly facilitate the integration of linkage groups with cytogenetic map and genomic research for the Yesso scallop

    Effects of Nitrogen and Phosphorus Inputs on Soil Bacterial Abundance, Diversity, and Community Composition in Chinese Fir Plantations

    Get PDF
    Nutrient inputs to forest ecosystems significantly influence aboveground plant community structure and ecosystem functioning. However, our knowledge of the influence of nitrogen (N) and/or phosphorus (P) inputs on belowground microbial communities in subtropical forests is still unclear. In this study, we used quantitative polymerase chain reaction and Illumina Miseq sequencing of the bacterial 16S rRNA gene to investigate bacterial abundance, diversity, and community composition in a Chinese fir plantation. The fertilization regimes were as follows: untreated control (CK), P amendment (P), N amendment (N), and N with P amendment (NP). Additions of N decreased soil pH and bacterial 16S rRNA gene abundance by 3.95 (from 4.69 to 3.95) and 3.95 × 109 copies g−1 dry soil (from 9.27 × 109 to 3.95 × 109 g−1 dry soil), respectively. Bacterial richness and diversity decreased with N addition (N and NP) rather than only P input. Proteobacteria, Acidobacteria, and Actinobacteria were the major phylum across all treatments. Nitrogen addition increased the relative abundance of Proteobacteria and Actinobacteria by 42.0 and 10.5%, respectively, while it reduced that of Acidobacteria by 26.5%. Bacterial community structure in the CK and P treatments was different from that in the N and NP treatments upon principle coordinates analysis. Phosphorus addition did not significantly affect soil bacterial communities, and no interactions between N and P inputs on microbial traits were observed. Soil pH and mineral N availability appeared to have a cooperative effect on bacterial abundance and community structure, with soil pH being the key influencing factor by canonical correspondence analysis. These results indicate that inorganic N rather than P fertilization affected both bacterial abundance and community composition in subtropical forests

    Ferroptosis-Related Proteins Are Potential Diagnostic Molecular Markers for Patients with Preeclampsia

    No full text
    Preeclampsia (PE) is the leading cause of maternal and fetal mortality and morbidity. Early and accurate diagnosis is critical to reduce mortality. Placental oxidative stress has been identified as a major pathway to the development of PE. Ferroptosis, a new form of regulated cell death, is associated with iron metabolism and oxidative stress, and has been suspected to play a role in the pathophysiology of PE, although the mechanism is yet to be elucidated. The identification of potential ferroptosis-related biomarkers is of great significance for the early diagnosis and treatment of PE. A gene expression dataset of peripheral blood samples was downloaded from the Gene Expression Omnibus (GEO) dataset. Differentially expressed genes (DEGs) were filtrated with the R package “limma”. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs were then conducted. Ferroptosis-related DEGs were screened by overlapping the ferroptosis-related genes with DEGs. The protein–protein interaction (PPI) network was used to identify the key ferroptosis-related DEGs. Enzyme-linked immunosorbent assay (ELISA) was used to validate changes in the selected key ferroptosis-related DEGs. The correlations between the key genes and clinical and pathological characteristics were analyzed. Finally, the diagnostic value of these key genes for PE was confirmed by a receiver operating characteristic (ROC) curve. A total of 5913 DEGs were identified and 45 ferroptosis-related DEGs were obtained. Besides, ferroptosis-related pathways were enriched by KEGG using DEGs. The PPI network showed that p53 and c-Jun were the critical hub genes. ELISA showed that p53 in the serum of PE patients was higher than that of the control group, while c-Jun was lower than that of the control group. Analysis of the clinicopathological features showed that p53 and c-Jun were correlated with the PE characteristics. Finally, based on the area under curve (AUC) values, c-Jun had the superior diagnostic power (AUC = 0.87, p < 0.001), followed by p53 (AUC = 0.75, p < 0.001). Our study identified that two key genes, p53 and c-Jun, might be potential diagnostic biomarkers of PE
    corecore